
 
 

 

Using statistical techniques for historical 

customer purchasing analysis  

 
 
Authors:  

Mohita Goplani, Ming Min, Alex Shoop, Yijiang (Chuck) Xu  

 
 
 
Advisor:  

Professor Fatemah Emdad 
 
 
 
 
 

 
 
 
Academic Project for DS 502: Statistical Methods in Data Science 



Table of Contents 
 

Table of Contents 2 

Abstract 3 

Introduction 3 

Methodology 4 
Data Extraction 4 
Dataset description: 4 
Regression Analysis on Spending 5 
Classification for Next Spending 5 

Random Forest Classification 6 

Results 6 
Regression Results 6 
Classification Results 10 

Discussion and Conclusion 11 

References 12 

Appendix 13 
Appendix A: R script file for regression analysis 13 
Appendix B: R script file for additional error metrics 17 

 
 

 
 
 
 
 
 
 
 
  



Abstract 
 CVS is, first and foremost, a pharmacy company. They value their pharmacy retail 

chains, and they want to improve their customer engagement experience. CVS has a strong 
market share performance and keeps their customer purchasing records, via a customer 
membership program called the ExtraCare card program. These large datasets help CVS in 
engaging in more potentially interested customers who would receive targeted advertisements 
and promotions. Here in our project we aimed to build a model to help CVS track customers 
buying trend and target their potential customers better. 

 

Introduction 
CVS Pharmacy is a well-known and popular pharmacy drugstore brand in the USA, they 

have more than 9,600 locations 28,000 pharmacists and 51,000 pharmacy technicians. [1] In 
addition to the common household medicine and cosmetics, CVS stores (online and physical 
Front Shops) sell snacks, letters, and general convenience items. CVS’s work-flow system 
contained clinical programs to help make sure patient care program is their key priority, it can 
feed their data into its clinical pipes to execute this type of patient intervention for their 
members. To make this system work, each CVS customer has an “ExtraCare” membership card 
which records all customer transactions and purchasing history. Furthermore, each CVS 
customer can create an online CVS.com profile and connect their ExtraCare member ID to their 
CVS.com online profile. It is through this data gathering and large datasets that lead to the CVS 
Chief financial officer to confidently say that CVS “improves [...] performance and the 
performance of those that [CVS] serves both from a clinical perspective and from a cost 
perspective.” [1] 

Most retailers in practice use feature advertising to increase store traffic and to 
communicate through the store. Managers have great interest in understanding how consumers 
react to such promotions as well as what types of promotions retailers should focus on in order to 
improve their store performance. [2] Therefore, in our project we want to help decide who would 
be more likely to shop in CVS store and who should receive a promotional coupon email in order 
to target potential customers and thus increase the store revenue.  

The team received access to a dataset of 10,000+ customers with recorded information on 
customer visited dates, number of visits the customer has made, item quantity/money spent, and 
a coupon flag for each customer. The primary goal was to create a predictive model to estimate 
how much money (in USD) a CVS customer would spend on their next purchase. 

 



Methodology 

Data Extraction 
The data used was extracted from the CVS database as secondary data. The relational 

database Teradata contained an enormous amount of data for this analysis. However, we as a 
team decided to examine only the last six months data for a sample of 10,000 customers to 
analyze their purchasing trends. In the beginning, there was limited data, and so we needed to 
test certain costumed parameters such as visit number of the customer and number of days from 
last visit. This data was not readily available in the database. However, we calculated and 
extracted these fields using SQL query language. 

‘Primary_visit’ is the i-th time that the same customer has visited the store in the last 6 
months. We used this data to check the frequency of the customers who visited the store. 
In addition, we calculated the days between two visits of a customer to understand the average 
time interval between two visits for every customer.  

Furthermore, the team performed some data cleaning on our dataset. Certain irrelevant 
and unnecessary fields, such as entries containing only one recorded purchase, or incorrect USD 
spent due to a negative recorded purchase; one reason for this negative purchase field was due to 
the fact that a customer used a high-discount coupon on a low-priced item. 

Finally, these calculated fields were then used as our independent variables to check the 
relationship between them and the spending probability of a customer. The following is a brief 
description of the dataset that we used for our analysis. 

Dataset description: 
The collected CVS customer dataset was historical data from the previous six months 

(between April 26, 2017 and October 24, 2017). The raw dataset was in an Excel spreadsheet, 
with seven columns and 418,670 rows (including headers). Below were the variables and their 
respective descriptions, followed by an example sampling of the dataset: 

● XTRA_CARD_NBR (int): unique key for each CVS customer. 
● DATE_VISIT (date): date when the CVS customer visited the store and purchased an 

item(s). 
● PRIMARY_VISIT (int): the i-th time that the customer has visited the store in the past 

six months. 
● DAYS_FROM_LAST_VISIT (int): days past since the CVS customer’s last visit. 
● TTL_QNTY (int): total count of items that the customer purchased in their visit. 
● SPENDS (float): total amount of money ($) that the customer spent in their visit. 
● CPN_FLAG (bool): a binary flag indicating if the customer used a coupon in their visit. 

 



 
Figure 1: Example sampling of the customer dataset. 

Regression Analysis on Spending 
For this part, we started with simple linear regression, by setting a new column named 

‘SPENDPRV’ as one of the predictor which mainly concerned the influence of previous 
spending on the current spends. Then we took ‘SPENDS’ as our response variable, and took 
‘PRIMARY_VISIT’, ‘DAYS_FROM_LAST_VISIT’, ‘CPN_FLAG’ as the other three 
independent variables. Furthermore, as what we’ve learned from Professor Fatemeh Emdad’s 
DS502/MA543 class [3], we did model fittings for polynomial regression and linear regression. 
Later we modified the response variable to ‘log(SPENDS)’ and compared these models by 
adjusted R​2​. We randomly chose 50% of our data as the train data, and the other half as our test 
data; we believed this was appropriate because of the relatively large dataset that we were 
working with. 

Regarding our reasoning behind modifying the response variable as ‘log(SPENDS),’ 
some customers may spend several dollars in one visit, but some may spend more than $1,000 
dollars. Because of this large spread range of our spends, we transformed our ‘SPENDS’ to 
logarithm, and redid the linear regression for the changed ‘SPENDS’. Then we tried ‘Lasso’ and 
‘Forward Subset Selection’ in order to also see if dimension reduction techniques would help 
with understanding our data and results.  

Classification for Next Spending 
We tried using all the regression method to fit an appropriate model to predict the next 

spends. However, we noticed that the accuracy rate of the models was quite low. 
We then tried bucketing the spends in particular ranges to try to improve the accuracy of the 
model. Until now, we were trying to predict the exact value of the next spends. Using bucketing 



we created buckets of particular spend ranges and predicted the next spend value by fitting it in 
the most appropriate bucket. 

For example, if a particular customer had spent around $33 in this current visit, he would 
be a part of the bin that would range between 30 and 40. This new variable ‘SPENDSBIN’ was 
used as our new dependent variable. Once we received our new dependent variable, we used 
random foresting to classify our customers in their specific bins. Following is an example of the 
same: 
 

 
Figure 2: Example sampling of our modified dataset set for classification purposes. 

Random Forest Classification 
Random foresting is a very efficient statistical method that builds on the idea of bagging 

but provides an improvement as it de-correlates the trees. It builds a number of decision trees on 
bootstrapped training dataset but each time a split in the tree is considered while building, a 
random sample of m predictors is selected out of the set of p predictors. This is done to reduce 
the variance in the model thus giving a more accurate prediction. We trained our data set using a 
random forest to classify the customer in the most appropriate bin for his next spends.  
 
 

Results 

Regression Results 
The results of simple linear regression can be found in the following figure. From this, all 

p-values for each predictor is at a extremely low level, which means each predictor is significant 
at 99% level. The adjusted R​2​ for simple linear model is 0.07995, the test MSE is 759.2,  which 
is shown in the table. 



 
Figure 3: Results of regular MSLR. 

 
The adjusted R​2​ for polynomial regression model is 0.08243, and the test MSE is 765.4. 

We have tried to fourth power of each predictor in this part. The adjusted R​2​ changed a little bit. 
When we modified the response variable to log(SPENDS), the adjusted R​2​ increased to 

0.099, which is the best one in all of our trials. Although 10% adjusted R​2​ is not a good result in 
the general case. However, refer to randomness of customer buying behavior, and some 
economics effect, (i.e. income level, personal utility, customer age etc.) we believe this result is 
fair good based on our data. Compare to some similar research of customer behavior, Liang’s [5] 
fitted model shows 10.8% adjusted R​2​ in his result, using ‘product knowledge’, ‘price 
consciousness’, ‘age’, ‘materialism’ as independent variable. So we decided this one as our final 
fitted model. 
 

Regression model Adjusted R​2 Test MSE 

MSLR, 
log(SPENDS) ~ . 

0.07995 759.2073 

MSLR, 
SPENDS ~ poly(x,4) 

0.08243 765.4136 

MSLR, 
log(SPENDS) ~ . 

0.09922 0.9492816 

Table 1: Comparison of different regression results. 
 

For ‘Lasso’, we used K-fold cross validation method to choose the best lambda, with K = 
10. The result is shown below. 



 
Figure 4: Lasso resulting plot. 

 
Therefore, based on the above results and observation, we determined that the best 

lambda is 0.01, the respective test MSE is 0.9492816, and that the best subset to select is all four 
predictor variables. This is further backed by our feature importance variable results for 
‘Forward Subset Selection.’ The first important variable, as we deduced based on historical 
spending patterns, was ‘CPN_FLAG’ with an adjusted R​2​ value of 0.0518. However if we used 
all four important variables, we end up with a resulting adjusted R​2​ value of 0.099377. The team 
decided to choose the group of variables with the best adjusted R​2​. 
 

 
Figure 5: Feature importance for each variable. 

 
Both ‘Lasso’ and ‘Forward Subset Selection’ suggested to use all four predictors. We 

then decided to fit our data with our determined logarithm model, using all four predictors. The 
final multiple linear regression formula and resulting summary table can be found below: 

 



 
Figure 6: MSLR formula and summary results of regression analysis using logarithm model. 

 
From the summary, all predictors and the whole model are significant at more than 99% 

level. The adjusted R​2​ shows us that consider the dimension of predictors, our model can explain 
almost 10% of customer spending amount in CVS store. Instead of stopping here, we tried to plot 
the errors to testify our model, which is shown as below. 

 
Figure 7: Residuals plot of MSLR and where response y is log(SPENDS). 

 



Except for some outliers in the upper right, all residuals are positioned around 0. And the 
more closed to 0, the denser of  residuals. This plot shows us that the residual follow a normal 
distribution with mean 0. As what we learned from class, a good fitted model should have 
normally distributed residuals with mean 0, which is consistent with our result. Based on our 
analysis of different model and the residuals, we believe our model is reasonable and fair good. 

Classification Results 
When we performed the random forest classification on the training data, we got a 

classification tree that would classify the customer in the best predicted spend bin which is the 
estimated spends for his current visit. The figure below is a part of the pictorial representation of 
the random forest tree that was generated, followed by a plot showing the optimal depth of tree 
to choose for random forest classification: 
 

 
Figure 8: A sliced example view of the random forest classification output. 

 



 
Figure 9: Tree depth versus classification score plot. 

 
Based on the above results, we noticed that at tree depth of about 6, the model gives the 

best accuracy of 40%. That is, for every 10 data points, at least 4 will be correctly classified in 
their respective spending bins. However, there are more advancements that can be made to 
further improve the accuracy of the model. 
 

Discussion and Conclusion 
 

When we received the data from CVS, we had team discussions where we brainstormed 
the methods that could be used to model this data. Since this was customer trending data that we 
were dealing with, which is considered as one of the most complicated data fields to perform 
predictive analysis along with the enormity of the dataset, figuring out the most optimal model 
selection was a challenging task.  

Our final adjusted R​2​ for the multiple linear regression model is not very high compared 
to the regression model we talked about in class which is just below 10%. But we believe this is 
because the consumers’ buying behavior is relatively hard to predict. We searched and 
discovered a similar research project related to our project model; their adjusted R​2​ are also 
around 10%, which indicates that our model is somewhat reasonable. [5] In daily life, unplanned 
impulse buying behavior accounts for a large proportion of consumer purchases. That means 
people always buy items without a historical reason and it can happen randomly. Therefore, it is 
hard to predict if they will purchase tomorrow or next week, and especially difficult to predict 
the amount of future purchase. 



One interesting discovery from our data analysis was that the coupon flag, which is a 
dummy variable, is the most important predictor in our model (as shown in figures 3 and 5). This 
judgement is further backed because according to a published article it was mentioned that 
discounted items (or coupon that can make it discounted) would generate a lot additional sales or 
profit for the retail stores. [4]  

Finally, we discovered some potential factors we could add-on to our model for future 
improvements. For example, we can include the category of the products, sales, etc. Also we can 
try to get more identifying information about the customers to help with specialized targeting 
such as their age, gender, income, and other demographic information. Seasonality or holidays 
also influence a lot; people always tend to buy more during holiday times or during 
season-shifting time people may need to prepare more medicines to prevent getting sick. We 
believe our work serves as a strong foundation for specialized CVS customer advertising and for 
future work in predictive customer analytics. 
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Appendix 

Appendix A: R script file for regression analysis 
# MA 543/DS 502 
# CVS CASESTUDY PROJECT 
# Team 4: Alex Shoop, Ming Min, Mohita Goplani, Yijiang (Chuck) Xu 
 
# Importing the CVS raw dataset 
rawDF <- read.csv(file="mainCVSdata.csv", header=TRUE, sep=",") 
 
# Setting up the additional column of SPENDSNEXT 
newDF <- rawDF 
# removing first row since we will have no use for it 
newDF <- newDF[-1,] 
# getting the previous visit's SPENDS for the customer 
newDF$SPENDSPRV <- rawDF$SPENDS[-nrow(newDF)] 
 
# loop to make NA the SPENDSNEXT where it's the customer's last visit 
# this takes about 5 minutes to process 
#for (i in 1:nrow(newDF)){ 
#  if (newDF$XTRA_CARD_NBR[i] != newDF$XTRA_CARD_NBR[i+1] || 
newDF$PRIMARY_VISIT[i] + 1 == newDF$PRIMARY_VISIT[i+1]){ 
#    newDF$SPENDSNEXT[i] <- NA 
#  } 
#} 
for (i in 2:nrow(newDF)){ 
  # check if card number A != card number B. If yes, then it means we are at card A's last entry. 
  if (newDF$XTRA_CARD_NBR[i-1] != newDF$XTRA_CARD_NBR[i]){ 
    newDF$SPENDSPRV[i] <- NA 
  
  } 
  # check if card B != card A. If yes, check card B's first visit. 
  if (newDF$XTRA_CARD_NBR[i] != newDF$XTRA_CARD_NBR[i-1]){ 
    # check if card B's first visit is not 1. If yes, then bad card B entry. Thus, NA. 
    if (newDF$PRIMARY_VISIT[i] != 1){ 
      newDF$PRIMARY_VISIT[i] <- NA 
    } 
  
  } 
  # if there's an NA entry previously for SPENDSNEXT (ie, bad card entry), then make the rest NA 
  else 



    if (is.na(newDF$PRIMARY_VISIT[i-1])){ 
    newDF$PRIMARY_VISIT[i] <- NA 
    } 
  # else then card B's entry is good (eg, they have a good first visit entry, and subsequent entries) 
  
} 
 
# removing the rows that have an NA entry 
analysisDF <- na.omit(newDF) 
# output analysis data 
write.csv(analysisDF, file = 'analysis_data.csv') 
 
 
#library('caret') 
library('scatterplot3d') 
library('corrplot') 
library('lubridate') 
set.seed(1) 
 
# Importing the pre-setup dataset 
df.CVS <- read.csv(file="analysis_data_ming.csv", header=TRUE, sep=",") 
# removing unnecessary columns 
newDFwithoutQNTY <- df.CVS[-c(1,2,3,6)] 
newDFwithQNTY <- df.CVS[-c(1,2,3)] 
 
# looking at basic plots, and observing any visual trend 
col1 <- colorRampPalette(c("red", "grey", "blue")) 
dfCVScor = cor(df.CVS) 
corrplot(dfCVScor, method = "number", col = col1(100)) 
plot(df.CVS$DATE_VISIT, df.CVS$SPENDS) 
 
# centered 
#primvisit.c = scale(df.CVS$PRIMARY_VISIT, center=TRUE, scale=FALSE) 
#daysfromlast.c = scale(df.CVS$DAYS_FROM_LAST_VISIT, center=TRUE, scale=FALSE) 
#spendprev.c = scale(df.CVS$SPENDSPRV, center=TRUE, scale=FALSE) 
#newvars.c = cbind(primvisit.c, daysfromlast.c, spendprev.c) 
#newDF.CVS = cbind(df.CVS, newvars.c) 
#names(newDF.CVS)[10:12] = c("primVisit.c", "daysFromLast.c", "spendPrev.c" ) 
#summary(newDF.CVS) 
 
 
plot(df.CVS$TTL_QNTY, df.CVS$SPENDS, xlab = "TTL_QNTY", ylab = "SPENDS", main = 
"TTL_QNTY vs SPENDS") 



plot(df.CVS$PRIMARY_VISIT, df.CVS$SPENDS, xlab = "PRIMARY_VISIT", ylab = "SPENDS", 
main = "PRIMARY_VISIT vs SPENDS") 
boxplot(df.CVS$SPENDS ~ df.CVS$CPN_FLAG) 
pairs(data.frame(df.CVS$SPENDS, df.CVS[3:5], df.CVS$CPN_FLAG), labels = 
c("SPENDS","PRIMARY_VISIT","DAYS_FROM_LAST_VISIT","TTL_QNTY","CPN_FLAG"), 
lower.panel = NULL) 
 
 
# setting up training and test datasets 
# random sampling 
training = sample(nrow(df.CVS), nrow(df.CVS)/2) 
#train.CVS = df.CVS[training,] 
#test.CVS = df.CVS[-training,] 
train.withoutQNTY = newDFwithoutQNTY[training,] 
test.withoutQNTY = newDFwithoutQNTY[-training,] 
train.withQNTY = newDFwithQNTY[training,] 
test.withQNTY = newDFwithQNTY[-training,] 
 
# performing basic regression analysis 
 
# linear regression, SEMI-GOOD CHOICE 
lin.regr.noQNTY <- lm(SPENDS ~ ., data = train.withoutQNTY) 
lin.regr.QNTY <- lm(SPENDS ~., data = train.withQNTY) 
# the version below is for the variable importance function 
#lin.regr <- train(SPENDS ~ PRIMARY_VISIT + DAYS_FROM_LAST_VISIT + CPN_FLAG + 
SPENDSPRV + QNTYPRV, data = train.CVS, method = "lm") 
summary(lin.regr.noQNTY) 
summary(lin.regr.QNTY) 
# diagnosis plots 
# prediction test 
lin.pred.noQNTY = predict(lin.regr.noQNTY, test.withoutQNTY) 
lin.pred.QNTY = predict(lin.regr.QNTY, test.withQNTY) 
mean((lin.pred.noQNTY - test.withoutQNTY$SPENDS)^2) 
mean((lin.pred.QNTY - test.withQNTY$SPENDS)^2) 
 
# residual plot 
plot(lin.pred[-length(lin.pred)], lin.regr$residuals) 
 
 
# polynomial fit, BAD CHOICE 
poly.fit = lm(SPENDS ~ PRIMARY_VISIT + DAYS_FROM_LAST_VISIT + CPN_FLAG + 
SPENDSPRV*QNTYPRV, data = train.CVS) 
summary(poly.fit) 



poly.pred = predict(poly.fit, test.CVS) 
mean((poly.pred - test.CVS$SPENDS)^2) 
 
 
# log response fit, GOOD CHOICE 
logresp.fit.noQNTY <- lm(log(SPENDS) ~ ., data = train.withoutQNTY) 
logresp.fit.QNTY <- lm(log(SPENDS) ~ ., data = train.withQNTY) 
logresp.fit.invQNTY <- lm(log(SPENDS) ~ PRIMARY_VISIT + DAYS_FROM_LAST_VISIT + 
I(1/TTL_QNTY) + CPN_FLAG + SPENDSPRV, data = train.withQNTY) 
summary(logresp.fit.noQNTY) 
summary(logresp.fit.QNTY) 
summary(logresp.fit.invQNTY) 
 
logresp.pred.noQNTY <- predict(logresp.fit.noQNTY, test.withoutQNTY) 
logresp.pred.QNTY <- predict(logresp.fit.QNTY, test.withQNTY) 
logresp.pred.invQNTY <- predict(logresp.fit.invQNTY, test.withQNTY) 
 
mean((logresp.pred.noQNTY - log(test.withoutQNTY$SPENDS))^2) 
mean((logresp.pred.QNTY - log(test.withQNTY$SPENDS))^2) 
mean((logresp.pred.invQNTY - log(test.withQNTY$SPENDS))^2) 
 
# residual plots 
plot(lin.regr.noQNTY, which = 1, main = "MSLR, no QNTY") 
plot(lin.regr.QNTY, which = 1, main = "MSLR, w/ QNTY") 
plot(logresp.fit.noQNTY, which = 1, main = "MSLR, where response = log(SPENDS), no QNTY") 
plot(logresp.fit.QNTY, which = 1, main = "MSLR, where response = log(SPENDS), w/ QNTY") 
plot(logresp.fit.invQNTY, which = 1, main = "MSLR, where response = log(SPENDS), w/ (1/QNTY)") 
 
randomSampling = sample(nrow(test.withoutQNTY),10) 
testSPENDS = test.withoutQNTY$SPENDS[randomSampling] 
#testPRIMVISIT = test.withoutQNTY$PRIMARY_VISIT[randomSampling] 
#testDAYSLASTVISIT = test.withoutQNTY$DAYS_FROM_LAST_VISIT[randomSampling] 
#testCPN = test.withoutQNTY$CPN_FLAG[randomSampling] 
#testPREVSPENDS = test.withoutQNTY$SPENDSPRV[randomSampling] 
logresp.noQNTY.coefs = coef(logresp.fit.noQNTY) 
 
logresp.pred.testing = predict(logresp.fit.noQNTY, test.withoutQNTY[randomSampling,]) 
 
inverse.pred = predict(inverse.fit, test.CVS) 
mean((inverse.pred - test.CVS$SPENDS)^2) 
plot(inverse.pred[-length(inverse.pred)], inverse.fit$residuals) 
plot(inverse.fit, pch = 16, which = 1) 
# variable importance, for linear regression model 



important.regr = varImp(lin.regr, scale = FALSE) 
plot(important.regr) 
 

Appendix B: R script file for additional error metrics 

data = read.csv("analysis_data.csv") 
data = data[-c(1,2,3)] 
data$SPENDS = log(data$SPENDS) 
 
set.seed(1) 
training = sample(nrow(data), nrow(data)/2) 
train = data[training, ] 
test = data[-training, ] 
 
# lasso 
library(glmnet) 
y.train = train$SPENDS 
x.train = model.matrix(SPENDS~., train)[, -1] 
x.test = model.matrix(SPENDS~., test)[, -1] 
y.test = test$SPENDS 
x = model.matrix(SPENDS~., data)[, -1] 
y = data$SPENDS 
grid=10^seq(10,-2,length=100) 
lasso.mod = glmnet(x.train, y.train, alpha=1, lambda = grid) 
cv.out = cv.glmnet(x.train, y.train,alpha = 1, lambda = grid, nfolds = 10) 
plot(cv.out) 
best.lam = cv.out$lambda.min 
lasso.pred = predict(lasso.mod, s=best.lam, newx=x.test) 
print("This is our test error with lasso") 
mean((lasso.pred-y.test)^2) 
 
# use whole data set to train our model 
out = glmnet(x, y, alpha = 1, lambda = grid) 
lasso.coef = predict(out, type = "coefficients", s=best.lam) 
print(lasso.coef) 
# we can plot the residuals to see if linear regression is a proper method 
yhat = predict(out, s=best.lam, newx=x) 
residuals = yhat - y 
plot(yhat,residuals) 
# it turns out not, we'll try the log because of the shape of residuals plot 
 
# try subset selectionm, for simple linear 



library(leaps) 
regfit.full = regsubsets(SPENDS~., data) 
reg.summary = summary(regfit.full) 
print(reg.summary) 
print(reg.summary$adjr2) 
# From the adjusted R2, is not a very good model 
 
# use linear regression to see the summary 
lm.fit = lm(SPENDS~.,data = data) 
 
 
################################## 
# coupon takes value of only 0&1, so we just try inverse from pairs(data) 
#data$SPENDSPRV = 1/data$SPENDSPRV 
#data$PRIMARY_VISIT = 1/data$PRIMARY_VISIT 
# seperate the data into train and test part 
set.seed(1) 
training = sample(nrow(data), nrow(data)/2) 
train = data[training, ] 
test = data[-training, ] 
# lasso 
library(glmnet) 
y.train = train$SPENDS 
x.train = model.matrix(SPENDS~., train)[, -1] 
x.test = model.matrix(SPENDS~., test)[, -1] 
y.test = test$SPENDS 
x = model.matrix(SPENDS~., data)[, -1] 
y = data$SPENDS 
grid=10^seq(10,-2,length=100) 
lasso.mod = glmnet(x.train, y.train, alpha=1, lambda = grid) 
cv.out = cv.glmnet(x.train, y.train,alpha = 1, lambda = grid) 
plot(cv.out) 
best.lam = cv.out$lambda.min 
lasso.pred = predict(lasso.mod, s=best.lam, newx=x.test) 
print("This is our test error with lasso") 
mean((lasso.pred-y.test)^2) 
 
# use whole data set to train our model 
out = glmnet(x, y, alpha = 1, lambda = grid) 
lasso.coef = predict(out, type = "coefficients", s=best.lam) 
print(lasso.coef) 
# we can plot the residuals to see if linear regression is a proper method 
yhat = predict(out, s=best.lam, newx=x) 



residuals = -yhat + y 
 
plot(x[,'LogSpends'],residuals) 
plot(x[, 'SPENDS'], residuals) 
 
# try subset selection 
library(leaps) 
regfit.full = regsubsets(SPENDS~., data) 
reg.summary = summary(regfit.full) 
print(reg.summary) 
print(reg.summary$adjr2) 
 
 
 
 


