
 1

MA 573 Project
Alexander Shoop, Ming Min, and Yijiang (Chuck) Xu

—————————— ——————————

1 INTRODUCTION
For our team project for the course Computational Methods in Financial Mathematics, we were first tasked to extract all call

option data on IBM US stock over all time periods and maturities possible. After the data extraction, and after reducing

the dataset of the options to only those with high liquidity (ie, volume traded > 10), then we were tasked to use the

option data to calibrate the CEV (Constant Elasticity of Variance) model. Upon successful calibration, we were then

asked to use the calibrated model and parameters to price discretely monitored barrier options (call options) using

Monte-Carlo methods and monthly monitoring of the barrier. We then compared our estimated calculated option values

with those retrieved from the Bloomberg Terminal computer.

2 METHODOLOGY
2.1 Data Extraction
In order to stay consistent with the result comparison of our option values, we used the Bloomberg Terminal computers

to retrieve and extract the specified call option data on IBM US equity. From the Bloomberg Terminal home screen, we

used the function OMON <GO> and then viewed the available 25 different strike call options for different expiration

dates. We then used the built-in action of exporting the data to an Excel CSV file. After extraction, our team ended up

with eight different Excel CSV files, each with the days to expiration, strikes, bid-ask costs, and volume traded. Our focus

was only on options with high liquidity, therefore our Python code reads-in only those option values that have a volume

traded greater than 10.

2.2 Model Calibration
Our designated model to calibrate was the CEV model [1]. We have for Brownian motion 𝑊𝑊𝑡𝑡, 𝜎𝜎 > 0, and 𝛽𝛽 ∈ [−1,0], the

dynamics were given as:

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑟𝑟𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑆𝑆𝑡𝑡
𝛽𝛽𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡

Let S be the solution to the above SDE. Then the generator ℒ of the given SDE was:

ℒ =
1
2
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2
𝑑𝑑2

𝑑𝑑𝑠𝑠2
+ 𝑟𝑟𝑆𝑆𝑡𝑡

𝑑𝑑
𝑑𝑑𝑠𝑠

Our finite difference approximation of the specified Cauchy problem was calculated as:

�−𝑣𝑣𝑡𝑡(𝑑𝑑, 𝑠𝑠) +
1
2
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2𝑣𝑣𝑠𝑠(𝑑𝑑, 𝑠𝑠) + 𝑟𝑟𝑆𝑆𝑡𝑡𝑣𝑣𝑠𝑠𝑠𝑠(𝑑𝑑, 𝑠𝑠) = 𝑟𝑟𝑣𝑣(𝑑𝑑, 𝑠𝑠)

𝑣𝑣(0, 𝑠𝑠) = (𝑠𝑠 − 𝐾𝐾)+

Where:

𝑣𝑣𝑠𝑠(𝑑𝑑, 𝑠𝑠) =
𝑣𝑣𝑖𝑖+1(𝑑𝑑) − 𝑣𝑣𝑖𝑖−1(𝑑𝑑)

2Δ𝑠𝑠

𝑣𝑣𝑠𝑠𝑠𝑠(𝑑𝑑, 𝑠𝑠) =
𝑣𝑣𝑖𝑖+1(𝑑𝑑) − 2𝑣𝑣𝑖𝑖(𝑑𝑑)+ 𝑣𝑣𝑖𝑖−1(𝑑𝑑)

Δ𝑠𝑠𝑠𝑠

Therefore, our approximating system of ODEs becomes the vector matrix: 𝑑𝑑
𝑑𝑑𝑡𝑡
𝑣𝑣 = 𝐴𝐴𝑣𝑣, where the matrix A has αi, βi, γi

parameters:

2

⎩
⎪⎪
⎨

⎪⎪
⎧𝛼𝛼𝑖𝑖 =

1
2

(
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
−

𝑟𝑟
Δ𝑠𝑠

)

𝛽𝛽𝑖𝑖 =
−𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
− 𝑟𝑟

𝛾𝛾𝑖𝑖 =
1
2

(
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
+

𝑟𝑟
Δ𝑠𝑠

)

We decided on 1000 space steps as a reasonable size for the scheme. Furthermore, our team decided to use the Crank-

Nicolson scheme for the finite difference estimation. We believe this is more efficient and more accurate than the ex-

plicit/implicit schemes [2]. In regards to the time steps, we only focused on work weekdays (ie, excluding the weekends).

We also made sure to set the appropriate boundary conditions on the system; explicit boundary condition at 0 and line-

arity boundary condition at 300.

Our objective was then to calibrate the σ and β parameters of the model, using the European call option pricing routine.

To set up the least square fit estimation, we first had to weight the option price values by the inverse of the bid-ask

spread. We then ran the curve_fit() [3] optimization function from the Python Scipy Optimize library. We decided to use

the curve_fit() function as it fit our needs to use the non-linear least squares approximation to calibrate our parameters

σ and β.

2.3 Monte-Carlo Pricing
We have calibrated our CEV model with the appropriate σ and β parameters. In order to price discretely monitored

barrier options (eg, Knockin and Knockout) with maturity T = 1 year and with monthly monitoring of the barrier, we

had to implement a Monte-Carlo pricing method. Our team decided to use sample size of 1000 to acquire a relatively

accurate result.

2.3.1 Stock simulation
Part of the Monte-Carlo pricing method involved stock step simulation. In order to stay consistent with our price esti-

mation, we used 2520 simulated stock steps for ease of calculation. Therefore our dt “timestep size” for our stock simu-

lation was 1
2520

. In regards to the risk-free rate r, we used the money market account rate that the Bloomberg OVME

<GO> module listed when pricing Knockin/Knockout options. Note that our code uses the initial IBM US stock price S0

= 160.28; this is due to our code implementation being worked on and accomplished from over the weekend.

2.3.2 Barrier option pricing
For sake of consistency and simplicity, we focused only on barrier call options. When considering the implementation

of our barrier option pricing method, we decided to have the end-user input the specified barrier type that they wish to

price. For example, if the end-user specifies the barrier type “down-in,” then our program will price a down-and-in

barrier option. Through this manner, we have a single pricing method whose input parameters are the ‘barrier type,’

strike value, and barrier value. This is to mimic the specified input required for Bloomberg’s OVME module. Our barrier

option pricing method can price the following barrier options: down-and-in, up-and-in, down-and-out, and up-and-out.

 3

3 IMPLEMENTATION & RESULTS
3.1 Calibration
After successful implementation of our calibration function, we calibrated the parameters σ and β of the CEV model as

follows:

� 𝜎𝜎 = 0.123509451756
 𝛽𝛽 = −0.00270567786139

We compared our calibrated parameters with the actual prices of the call options for IBM US stock; in other words we

compared our call option pricing result (which used our calibrated parameters) with the actual call option price result –

which was calculated as (𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡+ 𝑏𝑏𝑖𝑖𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡)
2

 retrieved from Bloomberg [4]. Our plots showing the comparisons are as follows:

Figure 1 Call option price comparison (May 2017)

Figure 2 Call option price comparison (June 2017)

Figure 3 Call option price comparison (July 2017)

Figure 4 Call option price comparison (Sept 2017)

4

Figure 5 Call option price comparison (Oct 2017)

Figure 6 Call option price comparison (Jan 2018)

Figure 7 Call option price comparison (June 2018)

Figure 8 Call option price comparison (Jan 2019)

As clearly seen, our calibrated model is fairly reasonable with the actual results. One clarification that is important to

mention is that these option price values are weighted values. Specifically, each actual price and our calculated option

prices were all weighted by a factor of 1
(𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡−𝑏𝑏𝑖𝑖𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡)

.

To further explain our calibration approach, at first we did individual parameter calibration. In other words we first

calibrated the sigma with a fixed beta (eg, β = -1) and then calibrated beta with a fixed sigma (eg, σ = 0.5). We discovered

– after trial and error – that the best initial guesses for our parameters were β = 0 and σ = 0.2.

Due to the large dataset of our CSV files and time complexity of our call option pricing method, our calibration code

took some time give us the results. We noticed σ converged to about 0.12 and β actually converged to a small number

(10-3).

3.2 Monte-Carlo
Using our calibrated CEV model (with 𝜎𝜎 = 0.123509451756 and 𝛽𝛽 = −0.00270567786139) and our implemented bar-

rier option pricing method, we have the following table of results:

 5

Knockout Barrier price (blue is UP-and-out, green is DOWN-and-out):
Strike \ Barrier 140 150 160 170 180
150 0 0 0 2.47803296507 5.94641056927
155 0 0 0 0.982371287458 4.61212351608
160 0 0 0 0.683304736495 2.57306242997
165 0 0 0 0.230237151468 1.34757850953
170 0 0 0 0.0976473570919 0.688969977456
175 0 0 0 0.0221989917271 0.308663648371
180 0 0 0 0.0112770980081 0.0821402336922
150 15.6976187282 13.6787985016 5.99147258308 0 0
155 11.2550066186 10.3107281038 5.02576716819 0 0
160 9.14661975315 8.56109903474 3.90293667891 0 0
165 6.55856148052 6.47779342693 3.36377165927 0 0
170 5.24275398701 4.5387507635 2.44281372919 0 0
175 3.08132619119 3.03282416718 1.86487248522 0 0
180 2.66462140169 2.00719912612 1.32916710518 0 0

Knockin Barrier price (blue is UP-and-in, green is DOWN-and-in):

Strike \ Barrier 140 150 160 170 180
150 14.3820058949 14.5089210853 14.8241338113 13.2890788519 9.84393849695
155 11.2587300564 11.7567893277 12.0056060853 10.8043698454 6.38103429971
160 9.29637556575 9.43584050487 9.40717954225 9.24811571206 7.00356477972
165 6.41518013447 6.89447922008 7.07397367769 5.47225142437 5.03098878208
170 4.85219182396 4.62704921986 5.21322452516 4.54221675682 3.74473982469
175 3.1226207322 3.25053185931 3.44251104896 3.56901236584 3.7714601219
180 2.20310624727 2.35983447996 2.6444677694 2.22590684653 1.92304900808
150 0.118010193747 1.89418642454 9.37834522964 14.6285662172 15.3426337278
155 0.0745086704052 1.15656561728 6.70009610055 11.6590542207 11.7236148895
160 0.0194574822217 0.831406423387 5.02146996848 9.09075526978 8.92369728728
165 0.00241567659375 0.395069991089 3.57641423075 6.44807448356 6.95229790845
170 0.0011832162541 0.154796967095 2.46922941154 4.65969343866 3.90459694603
175 0 0.103181114906 1.25067929067 3.33527418595 3.6048454977
180 0 0.0563878989427 0.860813327007 2.32789741873 2.26111832113

There are a few key points to remark from these results:

Knockout:

The behavior of the knockout option (up or down) is what our team anticipated. For example, clearly for an initial stock

value S0 = 160.28, any up-and-out barrier option with barrier below S0 will definitely have payoff = 0 because we are

already out of the barrier.

Knockin:

In regards to the behavior of the knockin option, the results require more thinking. Note that, for an up-and-in barrier

option with a barrier level = 180 and strike = 175, our Monte-Carlo pricing method returns price = 3.77. Although our

barrier is quite high in comparison to the initial S0 = 160.28, thanks to our σ and β parameters for the CEV model, we

know that there is some chance that the stock value will actually reach the high barrier level. This results in a small, but

not 0, price value. However for a low barrier level for a down-and-in barrier option, we have price results of either 0 or

close to 0.

6

3.3 Bloomberg Comparison
When performing the comparison with Bloomberg’s OVME pricing module, we specified the following conditions:

- Pricing Model: Local Volatility

- Dividend: 0%

- Expiration: 365d

- Monitoring Freq: 30

We ignored the BS Discrete and BS Continuous pricing models because our designated CEV model is a local volatility

model itself. The results retrieved from Bloomberg’s OVME module are in red text [4].

Knockout Barrier price (blue is UP-and-out, green is DOWN-and-out):
Strike \
Barrier

140 150 160 170 180

150 0 0 0 0 0 0 2.47 1.15 5.94 4.59
155 0 0 0 0 0 0 0.98 0.59 4.61 3.06
160 0 0 0 0 0 0 0.68 0.23 2.57 1.84
165 0 0 0 0 0 0 0.23 0.05 1.35 0.92
170 0 0 0 0 0 0 0.09 0 0.69 0.35
175 0 0 0 0 0 0 0.02 0 0.31 0.07
180 0 0 0 0 0 0 0.01 0 0.08 0
150 15.69 17.17 13.67 14.38 5.99 6.26 0 0 0 0
155 11.25 14.13 10.31 12.06 5.02 5.43 0 0 0 0
160 9.14 11.33 8.56 9.87 3.90 4.64 0 0 0 0
165 6.55 8.85 6.47 7.84 3.36 3.84 0 0 0 0
170 5.24 6.73 4.53 6.07 2.44 3.11 0 0 0 0
175 3.08 5.01 3.03 4.58 1.86 2.46 0 0 0 0
180 2.66 3.67 2.00 3.4 1.33 1.91 0 0 0 0

Knockin Barrier price (blue is UP-and-in, green is DOWN-and-in):

Strike \
Barrier

140 150 160 170 180

150 14.38 18.14 14.50 18.14 14.82 18.14 13.29 0.95 9.84 0.07
155 11.25 14.77 11.75 14.77 12.00 14.77 10.80 0.81 6.38 0.06
160 9.29 11.74 9.43 11.74 9.40 11.74 9.25 0.68 7.00 0.05
165 6.41 9.1 6.89 9.1 7.07 9.1 5.47 0.56 5.03 0.04
170 4.85 6.88 4.62 6.88 5.21 6.88 4.54 0.45 3.74 0.04
175 3.12 5.09 3.25 5.09 3.44 5.09 3.56 0.36 3.77 0.03
180 2.20 3.71 2.35 3.71 2.64 3.71 2.23 0.28 1.92 0.03
150 0.11 0.04 1.89 0.39 9.37 6.8 14.62 18.15 15.34 18.15
155 0.07 0.03 1.15 0.3 6.70 5.46 11.66 14.78 11.72 14.78
160 0.02 0.02 0.83 0.22 5.02 4.21 9.09 11.75 8.92 11.75
165 0.002 0.02 0.39 0.16 3.57 3.19 6.45 9.11 6.95 9.11
170 0.001 0.01 0.15 0.11 2.46 2.33 4.66 6.88 3.90 6.88
175 0 0.01 0.10 0.08 1.25 1.65 3.33 5.1 3.60 5.1
180 0 0.01 0.056 0.05 0.86 1.16 2.33 3.72 2.26 3.72

4 DISCUSSION
For our knockout barrier call option (both up and down), everything is as expected and we are satisfied with our imple-

mentation for knockout barrier call options. Although there are some discrepencies between our model and Bloomberg’s

OVME calculated prices, the knockout option allows us to restrict the stock value in a specified range. Thus, this explains

why our knockout barrier option values are fairly close to that of Bloomberg.

However, knockin options do not seem as consistent. As seen in the table above, in particular for an up-and-in barrier

 7

option, strike = 150, barrier level = 180, our Monte-Carlo method gave us price = 13.29, whereas Bloomberg returned

price = 0.95. For specifically up-and-in barrier options, our price values are an overestimation in comparison to the

Bloomberg values.

We performed a volatility comparison analysis between our calibrated σ and the volatility supplied from Bloomberg

Barrier option OVME [4]. Our plot is as follows:

Figure 9 Volatility comparison

This tells us that our calibrated σ stays almost constant for different stock values. But as seen in the figure, Bloomberg’s

volatility is higher and has almost a “smile” shape [5]. Upon further investigation, we believe that the Bloomberg model

uses a different diffusion factor. Our calibrated CEV model has the coefficient of diffusion as “𝜎𝜎𝑆𝑆𝑡𝑡
𝛽𝛽𝑆𝑆𝑡𝑡” whereas we do not

know what, if any different, coefficient difficusion factor that the Bloomberg model uses. We conclude that Bloomberg

may be using an extremely small diffusion factor other than just volatility.

5 CONCLUSION
The CEV (Constant Elasticity of Variance) model, based on our implementation, is close to the market data and is a valid

model to price Barrier options. Our own calibrated CEV model is consistent with the results acquired from Bloomberg’s

model, except for some knockin option settings. For us to determine which model we would want to use for pricing

options, we would require more market data in order to better calibrated the CEV model.

8

REFERENCES
[1] Paul Glasserman, Monte Carlo Methods in Financial Engineering. Springer 2004. ISBN 978-0-387-00451-3, p. 133.

[2] Ali Hirsa, Computational Methods in Finance. Chapman Hall/CRC 2013. ISBN 978-1-4665-7604-9, p. 72.

[3] Silva, F., (2013). Learning SciPy for numerical and scientific computing (New;1; ed.). Birmingham: Packt Pub-

lishing, Limited, p. 83.

[4] Bloomberg L.P. (2017) Option prices for IBM US. Retrieved April 30, 2017 from Bloomberg database.

[5] Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models (Vol. 11). Springer Science &

Business Media, p. 125.

 9

APPENDIX
Project_calibr.py:

1. #!/usr/bin/env python2
2. # -*- coding: utf-8 -*-
3. """
4. Created on Fri Apr 28 16:11:17 2017
5.
6. @author: mmin, akshoop, yxu9
7. """
8.
9. import numpy as np
10. import pandas as pd
11. import scipy.optimize as optimization
12. from tridiagonal import solver_modify
13. import matplotlib.pyplot as plt
14.
15. # define the function to give the option price by finite difference scheme
16. def CallOption(par, sigma, beta, r=0.013 ,s_min=0., s_max=300.):
17.
18. if sigma <= 0:
19. sigma = 0.1
20. if beta < -1:
21. beta = -1
22. if beta > 0:
23. beta = 0
24.
25. '''''set time discretization as 1500, time discretization as 1/252, T=days'''
26.
27. price = []
28. for T, k, w in par:
29. incre = s_max/1000
30. s = np.array([0.3*i for i in range(1000)])
31. A = np.array([[0.0]*1000]*1000)
32. A[0, 0] = -r
33. A[-1, -1] = r*s_max/incre - r
34. A[-1, -2] = -r*s_max/incre
35.
36. for i in range(1, 999):
37. A[i, i] = -sigma**2*s[i]**(2+2*beta)/incre**2 - r
38. A[i ,i-1] = 0.5*sigma**2*s[i]**(2+2*beta)/incre**2 - 0.5*r*s[i]/incre
39. A[i, i+1] = 0.5*sigma**2*s[i]**(2+2*beta)/incre**2 + 0.5*r*s[i]/incre
40.
41. v = s - float(k)
42. v[v<0] = 0
43. # JUST consider the weekdays
44. weekdays = int(T - 2*(T/7.))
45. # implement the time discretization until maturity
46. for i in range(weekdays):
47. z = np.dot(np.identity(1000)+1/252./2*A, v)
48. v = solver_modify(np.identity(1000)-1/252./2*A, z)
49. price.append(v[534]/w)
50. print sigma, beta
51. return np.array(price)
52.
53.
54. def calibration(data):
55. '''''
56. data is the dataframe contains all data we need, has three columns:"Strike",
57. "Maturity_Time", "Act_Price"
58. '''
59. # set the initial value of beta and sigma
60. beta = 0

10

61. sigma = 0.2
62. initial = (sigma, beta)
63. para = optimization.curve_fit(CallOption,
64. np.transpose([data['Maturity_Time'].values, data['Strike'].values, data['weight'].val-

ues]),
65. data['Act_Price'], initial)
66. return para
67.
68.
69. if __name__=="__main__":
70. names =['Sep2017.csv','Jun2018.csv', 'Jan2018.csv', 'Jan2019.csv',
71. 'Jul2017.csv', 'May2017.csv', 'Jun2017.csv', 'Oct2017.csv']
72. # combine all needed data together in one dataframe
73. data = pd.DataFrame(columns = ['Strike','Maturity_Time', 'Act_Price'])
74. for filename in names:
75. newdata = pd.DataFrame(columns = ['Strike','Maturity_Time', 'Act_Price', 'weight'])
76. f = pd.read_csv(filename)
77. try:
78. T = float(f['Strike'][0][11:14])
79. except ValueError:
80. T = float(f['Strike'][0][11:13])
81. # use data with more than 10 volume to calculate
82. f = f[f['Volm']>10]
83. newdata['Strike'] = np.array(f['Strike'], dtype=float)
84. newdata['Maturity_Time'] = T
85. newdata['Act_Price'] = np.array((f['Bid']+f['Ask'])/2, dtype=float)/np.array(f['Ask']-

f['Bid'], dtype=float)
86. newdata['weight'] = np.array(f['Ask']-f['Bid'], dtype=float)
87. data = data.append(newdata, ignore_index = True)
88. newParams = calibration(data)
89. print("Our calibrated sigma and beta for the CEV model is:")
90. print newParams[0]

Project_MC.py:

1. #!/usr/bin/env python2
2. # -*- coding: utf-8 -*-
3. """
4. Created on Fri Apr 28 16:11:17 2017
5.
6. @author: mmin, akshoop, yxu9
7. """
8.
9. import numpy as np
10. import pandas as pd
11. import scipy.optimize as optimization
12. from tridiagonal import solver_modify
13. import matplotlib.pyplot as plt
14.
15. # generate stock process
16. def Stock(sigma, beta, r=0.013, s=160.28, T=1.):
17. stock = [s]
18. N = 2520
19. for i in range(N):
20. stock.append(stock[-1] + r*stock[-1]*(T/N) + sigma*stock[-

1]**(beta+1)*np.sqrt(T/N)*np.random.standard_normal())
21. return np.array(stock)
22.
23. # function calculate Barrier option payoff with different type
24. def BarrierOption(stock, k, b, Type, T=1.):
25. '''''stock: the stock process; b: barrier; Type: option type
26. Assume all these are call option'''
27. check = [stock[210*i] for i in range(12)]
28. if Type=='up-out':
29. if max(check) >= b:
30. return 0

 11

31. else: payoff = stock[-1]-k
32.
33. if Type=='up-in':
34. if max(check) >= b:
35. payoff = stock[-1]-k
36. else:
37. return 0
38.
39. if Type=='down-out':
40. if min(check) <= b:
41. return 0
42. else: payoff = stock[-1]-k
43.
44. if Type=='down-in':
45. if min(check) <= b:
46. payoff = stock[-1]-k
47. else: return 0
48. return payoff if payoff > 0 else 0
49.
50.
51. if __name__=="__main__":
52. # Part c)
53. # do Monte Carlo methods
54. n = 1000
55. price = []
56. Type = raw_input("Please input your barrier types: (choose from 'up-out', 'up-in', 'down-

out', 'down-in') ")
57. k = input("What is your strike price: ")
58. b = input("What is your barrier: ")
59. r = 0.0138
60. T = 1.
61. # retrieved from CEV model calibration
62. sigma = 0.123509451756
63. beta = -0.00270567786139
64. for i in range(n):
65. stock = Stock(sigma, beta)
66. price.append(np.exp(-r*T)*BarrierOption(stock, k, b, Type))
67. price = np.array(price)
68. # print the price(np.mean(price))
69. print "The price of your Barrier Option is: "+ str(np.mean(price))
70.

	1 Introduction
	2 Methodology
	2.1 Data Extraction
	2.2 Model Calibration
	2.3 Monte-Carlo Pricing
	2.3.1 Stock simulation
	2.3.2 Barrier option pricing

	3 Implementation & Results
	3.1 Calibration
	3.2 Monte-Carlo
	3.3 Bloomberg Comparison

	4 Discussion
	5 Conclusion
	References
	Appendix

