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1 INTRODUCTION
For our team project for the course Computational Methods in Financial Mathematics, we were first tasked to extract all call 

option data on IBM US stock over all time periods and maturities possible. After the data extraction, and after reducing 

the dataset of the options to only those with high liquidity (ie, volume traded > 10), then we were tasked to use the 

option data to calibrate the CEV (Constant Elasticity of Variance) model. Upon successful calibration, we were then 

asked to use the calibrated model and parameters to price discretely monitored barrier options (call options) using 

Monte-Carlo methods and monthly monitoring of the barrier. We then compared our estimated calculated option values 

with those retrieved from the Bloomberg Terminal computer. 

2 METHODOLOGY 
2.1 Data Extraction 
In order to stay consistent with the result comparison of our option values, we used the Bloomberg Terminal computers 

to retrieve and extract the specified call option data on IBM US equity. From the Bloomberg Terminal home screen, we 

used the function OMON <GO> and then viewed the available 25 different strike call options for different expiration 

dates. We then used the built-in action of exporting the data to an Excel CSV file. After extraction, our team ended up 

with eight different Excel CSV files, each with the days to expiration, strikes, bid-ask costs, and volume traded. Our focus 

was only on options with high liquidity, therefore our Python code reads-in only those option values that have a volume 

traded greater than 10. 

2.2 Model Calibration 
Our designated model to calibrate was the CEV model [1]. We have for Brownian motion 𝑊𝑊𝑡𝑡, 𝜎𝜎 > 0, and 𝛽𝛽 ∈ [−1,0], the 

dynamics were given as: 

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑟𝑟𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 +  𝜎𝜎𝑆𝑆𝑡𝑡
𝛽𝛽𝑆𝑆𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 

Let S be the solution to the above SDE. Then the generator ℒ of the given SDE was: 
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Our finite difference approximation of the specified Cauchy problem was calculated as: 

�−𝑣𝑣𝑡𝑡(𝑑𝑑, 𝑠𝑠) +  
1
2
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2𝑣𝑣𝑠𝑠(𝑑𝑑, 𝑠𝑠) + 𝑟𝑟𝑆𝑆𝑡𝑡𝑣𝑣𝑠𝑠𝑠𝑠(𝑑𝑑, 𝑠𝑠) = 𝑟𝑟𝑣𝑣(𝑑𝑑, 𝑠𝑠)

𝑣𝑣(0, 𝑠𝑠) = (𝑠𝑠 − 𝐾𝐾)+
 

Where:  

𝑣𝑣𝑠𝑠(𝑑𝑑, 𝑠𝑠) =  
𝑣𝑣𝑖𝑖+1(𝑑𝑑) −  𝑣𝑣𝑖𝑖−1(𝑑𝑑)

2Δ𝑠𝑠
 

𝑣𝑣𝑠𝑠𝑠𝑠(𝑑𝑑, 𝑠𝑠) =
𝑣𝑣𝑖𝑖+1(𝑑𝑑) −  2𝑣𝑣𝑖𝑖(𝑑𝑑)+ 𝑣𝑣𝑖𝑖−1(𝑑𝑑)

Δ𝑠𝑠𝑠𝑠
  

Therefore, our approximating system of ODEs becomes the vector matrix: 𝑑𝑑
𝑑𝑑𝑡𝑡
𝑣𝑣 = 𝐴𝐴𝑣𝑣, where the matrix A has αi, βi, γi 

parameters: 



2  

 

⎩
⎪⎪
⎨

⎪⎪
⎧𝛼𝛼𝑖𝑖 =  

1
2

(
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
−  

𝑟𝑟
Δ𝑠𝑠

)

𝛽𝛽𝑖𝑖 =  
−𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
−  𝑟𝑟

𝛾𝛾𝑖𝑖 =  
1
2

(
𝜎𝜎2𝑆𝑆𝑡𝑡

2𝛽𝛽𝑆𝑆𝑡𝑡2

Δ𝑠𝑠2
+  

𝑟𝑟
Δ𝑠𝑠

)

 

 

We decided on 1000 space steps as a reasonable size for the scheme. Furthermore, our team decided to use the Crank-

Nicolson scheme for the finite difference estimation. We believe this is more efficient and more accurate than the ex-

plicit/implicit schemes [2]. In regards to the time steps, we only focused on work weekdays (ie, excluding the weekends). 

We also made sure to set the appropriate boundary conditions on the system; explicit boundary condition at 0 and line-

arity boundary condition at 300.  

Our objective was then to calibrate the σ and β parameters of the model, using the European call option pricing routine. 

To set up the least square fit estimation, we first had to weight the option price values by the inverse of the bid-ask 

spread. We then ran the curve_fit() [3] optimization function from the Python Scipy Optimize library. We decided to use 

the curve_fit() function as it fit our needs to use the non-linear least squares approximation  to calibrate our parameters 

σ and β. 

 

2.3 Monte-Carlo Pricing 
We have calibrated our CEV model with the appropriate σ and β parameters. In order to price discretely monitored 

barrier options (eg, Knockin and Knockout) with maturity T = 1 year and with monthly monitoring of the barrier, we 

had to implement a Monte-Carlo pricing method. Our team decided to use sample size of 1000 to acquire a relatively 

accurate result. 

2.3.1 Stock simulation 
Part of the Monte-Carlo pricing method involved stock step simulation. In order to stay consistent with our price esti-

mation, we used 2520 simulated stock steps for ease of calculation. Therefore our dt “timestep size” for our stock simu-

lation was 1
2520

. In regards to the risk-free rate r, we used the money market account rate that the Bloomberg OVME 

<GO> module listed when pricing Knockin/Knockout options. Note that our code uses the initial IBM US stock price S0 

= 160.28; this is due to our code implementation being worked on and accomplished from over the weekend.  

 

2.3.2 Barrier option pricing 
For sake of consistency and simplicity, we focused only on barrier call options. When considering the implementation 

of our barrier option pricing method, we decided to have the end-user input the specified barrier type that they wish to 

price. For example, if the end-user specifies the barrier type “down-in,” then our program will price a down-and-in 

barrier option. Through this manner, we have a single pricing method whose input parameters are the ‘barrier type,’ 

strike value, and barrier value. This is to mimic the specified input required for Bloomberg’s OVME module. Our barrier 

option pricing method can price the following barrier options: down-and-in, up-and-in, down-and-out, and up-and-out. 
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3   IMPLEMENTATION & RESULTS 
3.1 Calibration 
After successful implementation of our calibration function, we calibrated the parameters σ and β of the CEV model as 

follows:  

� 𝜎𝜎 =  0.123509451756  
   𝛽𝛽 =  −0.00270567786139 

 

We compared our calibrated parameters with the actual prices of the call options for IBM US stock; in other words we 

compared our call option pricing result (which used our calibrated parameters) with the actual call option price result – 

which was calculated as (𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡+ 𝑏𝑏𝑖𝑖𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡)
2

 retrieved from Bloomberg [4]. Our plots showing the comparisons are as follows:

 
Figure 1 Call option price comparison (May 2017) 

 
Figure 2 Call option price comparison (June 2017) 

 
Figure 3 Call option price comparison (July 2017) 

 
Figure 4 Call option price comparison (Sept 2017) 
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Figure 5 Call option price comparison (Oct 2017) 

 
Figure 6 Call option price comparison (Jan 2018) 

 
Figure 7 Call option price comparison (June 2018) 

 
Figure 8 Call option price comparison (Jan 2019) 

As clearly seen, our calibrated model is fairly reasonable with the actual results. One clarification that is important to 

mention is that these option price values are weighted values. Specifically, each actual price and our calculated option 

prices were all weighted by a factor of 1
(𝑎𝑎𝑠𝑠𝑎𝑎 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡−𝑏𝑏𝑖𝑖𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡)

. 

To further explain our calibration approach, at first we did individual parameter calibration. In other words we first 

calibrated the sigma with a fixed beta (eg, β = -1) and then calibrated beta with a fixed sigma (eg, σ = 0.5). We discovered 

– after trial and error – that the best initial guesses for our parameters were β = 0 and σ = 0.2.  

Due to the large dataset of our CSV files and time complexity of our call option pricing method, our calibration code 

took some time give us the results. We noticed σ converged to about 0.12 and β actually converged to a small number 

(10-3).  

3.2 Monte-Carlo 
Using our calibrated CEV model (with 𝜎𝜎 =  0.123509451756 and 𝛽𝛽 =  −0.00270567786139) and our implemented bar-

rier option pricing method, we have the following table of results: 

 
 
 
 
 



 5 

 

Knockout Barrier price (blue is UP-and-out, green is DOWN-and-out): 
Strike \ Barrier 140 150 160 170 180 
150 0 0 0 2.47803296507 5.94641056927 
155 0 0 0 0.982371287458 4.61212351608 
160 0 0 0 0.683304736495 2.57306242997 
165 0 0 0 0.230237151468 1.34757850953 
170 0 0 0 0.0976473570919 0.688969977456 
175 0 0 0 0.0221989917271 0.308663648371 
180 0 0 0 0.0112770980081 0.0821402336922 
150 15.6976187282 13.6787985016 5.99147258308 0 0 
155 11.2550066186 10.3107281038 5.02576716819 0 0 
160 9.14661975315 8.56109903474 3.90293667891 0 0 
165 6.55856148052 6.47779342693 3.36377165927 0 0 
170 5.24275398701 4.5387507635 2.44281372919 0 0 
175 3.08132619119 3.03282416718 1.86487248522 0 0 
180 2.66462140169 2.00719912612 1.32916710518 0 0 

 
Knockin Barrier price (blue is UP-and-in, green is DOWN-and-in): 

Strike \ Barrier 140 150 160 170 180 
150 14.3820058949 14.5089210853 14.8241338113 13.2890788519 9.84393849695 
155 11.2587300564 11.7567893277 12.0056060853 10.8043698454 6.38103429971 
160 9.29637556575 9.43584050487 9.40717954225 9.24811571206 7.00356477972 
165 6.41518013447 6.89447922008 7.07397367769 5.47225142437 5.03098878208 
170 4.85219182396 4.62704921986 5.21322452516 4.54221675682 3.74473982469 
175 3.1226207322 3.25053185931 3.44251104896 3.56901236584 3.7714601219 
180 2.20310624727 2.35983447996 2.6444677694 2.22590684653 1.92304900808 
150 0.118010193747 1.89418642454 9.37834522964 14.6285662172 15.3426337278 
155 0.0745086704052 1.15656561728 6.70009610055 11.6590542207 11.7236148895 
160 0.0194574822217 0.831406423387 5.02146996848 9.09075526978 8.92369728728 
165 0.00241567659375 0.395069991089 3.57641423075 6.44807448356 6.95229790845 
170 0.0011832162541 0.154796967095 2.46922941154 4.65969343866 3.90459694603 
175 0 0.103181114906 1.25067929067 3.33527418595 3.6048454977 
180 0 0.0563878989427 0.860813327007 2.32789741873 2.26111832113 

 
There are a few key points to remark from these results: 

Knockout: 

The behavior of the knockout option (up or down) is what our team anticipated. For example, clearly for an initial stock 

value S0 = 160.28, any up-and-out barrier option with barrier below S0 will definitely have payoff = 0 because we are 

already out of the barrier. 

Knockin: 

In regards to the behavior of the knockin option, the results require more thinking. Note that, for an up-and-in barrier 

option with a barrier level = 180 and strike = 175, our Monte-Carlo pricing method returns price = 3.77. Although our 

barrier is quite high in comparison to the initial S0 = 160.28, thanks to our σ and β parameters for the CEV model, we 

know that there is some chance that the stock value will actually reach the high barrier level. This results in a small, but 

not 0, price value. However for a low barrier level for a down-and-in barrier option, we have price results of either 0 or 

close to 0.  
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3.3 Bloomberg Comparison  
When performing the comparison with Bloomberg’s OVME pricing module, we specified the following conditions: 

- Pricing Model: Local Volatility 

- Dividend: 0% 

- Expiration: 365d 

- Monitoring Freq: 30 

We ignored the BS Discrete and BS Continuous pricing models because our designated CEV model is a local volatility 

model itself. The results retrieved from Bloomberg’s OVME module are in red text [4]. 

Knockout Barrier price (blue is UP-and-out, green is DOWN-and-out): 
Strike \ 
Barrier 

140 150 160 170 180 

150 0 0 0 0 0 0 2.47 1.15 5.94 4.59 
155 0 0 0 0 0 0 0.98 0.59 4.61 3.06 
160 0 0 0 0 0 0 0.68 0.23 2.57 1.84 
165 0 0 0 0 0 0 0.23 0.05 1.35 0.92 
170 0 0 0 0 0 0 0.09 0 0.69 0.35 
175 0 0 0 0 0 0 0.02 0 0.31 0.07 
180 0 0 0 0 0 0 0.01 0 0.08 0 
150 15.69 17.17 13.67 14.38 5.99 6.26 0 0 0 0 
155 11.25 14.13 10.31 12.06 5.02 5.43 0 0 0 0 
160 9.14 11.33 8.56 9.87 3.90 4.64 0 0 0 0 
165 6.55 8.85 6.47 7.84 3.36 3.84 0 0 0 0 
170 5.24 6.73 4.53 6.07 2.44 3.11 0 0 0 0 
175 3.08 5.01 3.03 4.58 1.86 2.46 0 0 0 0 
180 2.66 3.67 2.00 3.4 1.33 1.91 0 0 0 0 

 
Knockin Barrier price (blue is UP-and-in, green is DOWN-and-in): 

Strike \ 
Barrier 

140 150 160 170 180 

150 14.38 18.14 14.50 18.14 14.82 18.14 13.29 0.95 9.84 0.07 
155 11.25 14.77 11.75 14.77 12.00 14.77 10.80 0.81 6.38 0.06 
160 9.29 11.74 9.43 11.74 9.40 11.74 9.25 0.68 7.00 0.05 
165 6.41 9.1 6.89 9.1 7.07 9.1 5.47 0.56 5.03 0.04 
170 4.85 6.88 4.62 6.88 5.21 6.88 4.54 0.45 3.74 0.04 
175 3.12 5.09 3.25 5.09 3.44 5.09 3.56 0.36 3.77 0.03 
180 2.20 3.71 2.35 3.71 2.64 3.71 2.23 0.28 1.92 0.03 
150 0.11 0.04 1.89 0.39 9.37 6.8 14.62 18.15 15.34 18.15 
155 0.07 0.03 1.15 0.3 6.70 5.46 11.66 14.78 11.72 14.78 
160 0.02 0.02 0.83 0.22 5.02 4.21 9.09 11.75 8.92 11.75 
165 0.002 0.02 0.39 0.16 3.57 3.19 6.45 9.11 6.95 9.11 
170 0.001 0.01 0.15 0.11 2.46 2.33 4.66 6.88 3.90 6.88 
175 0 0.01 0.10 0.08 1.25 1.65 3.33 5.1 3.60 5.1 
180 0 0.01 0.056 0.05 0.86 1.16 2.33 3.72 2.26 3.72 

 

4 DISCUSSION 
For our knockout barrier call option (both up and down), everything is as expected and we are satisfied with our imple-

mentation for knockout barrier call options. Although there are some discrepencies between our model and Bloomberg’s 

OVME calculated prices, the knockout option allows us to restrict the stock value in a specified range. Thus, this explains 

why our knockout barrier option values are fairly close to that of Bloomberg. 

However, knockin options do not seem as consistent. As seen in the table above, in particular for an up-and-in barrier 
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option, strike = 150, barrier level = 180, our Monte-Carlo method gave us price = 13.29, whereas Bloomberg returned 

price = 0.95. For specifically up-and-in barrier options, our price values are an overestimation in comparison to the 

Bloomberg values.  

We performed a volatility comparison analysis between our calibrated σ and the volatility supplied from Bloomberg 

Barrier option OVME [4]. Our plot is as follows: 

 
Figure 9 Volatility comparison 

This tells us that our calibrated σ stays almost constant for different stock values. But as seen in the figure, Bloomberg’s 

volatility is higher and has almost a “smile” shape [5]. Upon further investigation, we believe that the Bloomberg model 

uses a different diffusion factor. Our calibrated CEV model has the coefficient of diffusion as “𝜎𝜎𝑆𝑆𝑡𝑡
𝛽𝛽𝑆𝑆𝑡𝑡” whereas we do not 

know what, if any different, coefficient difficusion factor that the Bloomberg model uses. We conclude that Bloomberg 

may be using an extremely small diffusion factor other than just volatility.  

5 CONCLUSION 
The CEV (Constant Elasticity of Variance) model, based on our implementation, is close to the market data and is a valid 

model to price Barrier options. Our own calibrated CEV model is consistent with the results acquired from Bloomberg’s 

model, except for some knockin option settings. For us to determine which model we would want to use for pricing 

options, we would require more market data in order to better calibrated the CEV model. 
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APPENDIX 
Project_calibr.py: 

1. #!/usr/bin/env python2   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on Fri Apr 28 16:11:17 2017  
5.   
6. @author: mmin, akshoop, yxu9  
7. """   
8.    
9. import numpy as np   
10. import pandas as pd   
11. import scipy.optimize as optimization   
12. from tridiagonal import solver_modify   
13. import matplotlib.pyplot as plt   
14.    
15. # define the function to give the option price by finite difference scheme   
16. def CallOption(par, sigma, beta, r=0.013 ,s_min=0., s_max=300.):   
17.        
18.     if sigma <= 0:    
19.         sigma = 0.1   
20.     if beta < -1:   
21.         beta = -1   
22.     if beta > 0:   
23.         beta = 0   
24.            
25.     '''''set time discretization as 1500, time discretization as 1/252, T=days'''   
26.        
27.     price = []   
28.     for T, k, w in par:   
29.         incre = s_max/1000   
30.         s = np.array([0.3*i for i in range(1000)])   
31.         A = np.array([[0.0]*1000]*1000)   
32.         A[0, 0] = -r   
33.         A[-1, -1] = r*s_max/incre - r   
34.         A[-1, -2] = -r*s_max/incre   
35.            
36.         for i in range(1, 999):   
37.             A[i, i] = -sigma**2*s[i]**(2+2*beta)/incre**2 - r   
38.             A[i ,i-1] = 0.5*sigma**2*s[i]**(2+2*beta)/incre**2 - 0.5*r*s[i]/incre   
39.             A[i, i+1] = 0.5*sigma**2*s[i]**(2+2*beta)/incre**2 + 0.5*r*s[i]/incre   
40.            
41.         v = s - float(k)   
42.         v[v<0] = 0   
43.         # JUST consider the weekdays   
44.         weekdays = int(T - 2*(T/7.))   
45.         # implement the time discretization until maturity   
46.         for i in range(weekdays):   
47.             z = np.dot(np.identity(1000)+1/252./2*A, v)   
48.             v = solver_modify(np.identity(1000)-1/252./2*A, z)   
49.         price.append(v[534]/w)   
50.     print sigma, beta   
51.     return np.array(price)   
52.    
53.      
54. def calibration(data):   
55.     '''''  
56.     data is the dataframe contains all data we need, has three columns:"Strike",  
57.     "Maturity_Time", "Act_Price"  
58.     '''   
59.     # set the initial value of beta and sigma   
60.     beta = 0   
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61.     sigma = 0.2   
62.     initial = (sigma, beta)   
63.     para = optimization.curve_fit(CallOption,    
64.         np.transpose([data['Maturity_Time'].values, data['Strike'].values, data['weight'].val-

ues]),   
65.                     data['Act_Price'], initial)   
66.     return para   
67.    
68.    
69. if __name__=="__main__":   
70.     names =['Sep2017.csv','Jun2018.csv', 'Jan2018.csv', 'Jan2019.csv',   
71.     'Jul2017.csv', 'May2017.csv', 'Jun2017.csv', 'Oct2017.csv']   
72.     # combine all needed data together in one dataframe   
73.     data = pd.DataFrame(columns = ['Strike','Maturity_Time', 'Act_Price'])   
74.     for filename in names:   
75.         newdata = pd.DataFrame(columns = ['Strike','Maturity_Time', 'Act_Price', 'weight'])   
76.         f = pd.read_csv(filename)   
77.         try:   
78.             T = float(f['Strike'][0][11:14])   
79.         except ValueError:   
80.             T = float(f['Strike'][0][11:13])   
81.         # use data with more than 10 volume to calculate   
82.         f = f[f['Volm']>10]   
83.         newdata['Strike'] = np.array(f['Strike'], dtype=float)   
84.         newdata['Maturity_Time'] = T   
85.         newdata['Act_Price'] = np.array((f['Bid']+f['Ask'])/2, dtype=float)/np.array(f['Ask']-

f['Bid'], dtype=float)   
86.         newdata['weight'] = np.array(f['Ask']-f['Bid'], dtype=float)   
87.         data = data.append(newdata, ignore_index = True)   
88.     newParams = calibration(data)   
89.     print("Our calibrated sigma and beta for the CEV model is:")   
90.     print newParams[0]   

 
Project_MC.py: 

1. #!/usr/bin/env python2   
2. # -*- coding: utf-8 -*-   
3. """  
4. Created on Fri Apr 28 16:11:17 2017  
5.   
6. @author: mmin, akshoop, yxu9  
7. """   
8.    
9. import numpy as np   
10. import pandas as pd   
11. import scipy.optimize as optimization   
12. from tridiagonal import solver_modify   
13. import matplotlib.pyplot as plt   
14.    
15. # generate stock process   
16. def Stock(sigma, beta, r=0.013, s=160.28, T=1.):   
17.     stock = [s]   
18.     N = 2520   
19.     for i in range(N):   
20.         stock.append(stock[-1] + r*stock[-1]*(T/N) + sigma*stock[-

1]**(beta+1)*np.sqrt(T/N)*np.random.standard_normal())   
21.     return np.array(stock)   
22.    
23. # function calculate Barrier option payoff with different type   
24. def BarrierOption(stock, k, b, Type, T=1.):   
25.     '''''stock: the stock process; b: barrier; Type: option type  
26.         Assume all these are call option'''   
27.     check = [stock[210*i] for i in range(12)]   
28.     if Type=='up-out':   
29.         if max(check) >= b:   
30.             return 0   
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31.         else: payoff = stock[-1]-k   
32.            
33.     if Type=='up-in':   
34.         if max(check) >= b:   
35.             payoff = stock[-1]-k   
36.         else:   
37.             return 0   
38.            
39.     if Type=='down-out':   
40.         if min(check) <= b:   
41.             return 0   
42.         else: payoff = stock[-1]-k   
43.    
44.     if Type=='down-in':   
45.         if min(check) <= b:   
46.             payoff = stock[-1]-k   
47.         else: return 0     
48.     return payoff if payoff > 0 else 0    
49.    
50.    
51. if __name__=="__main__":   
52.     # Part c)   
53.     # do Monte Carlo methods    
54.     n = 1000   
55.     price = []   
56.     Type = raw_input("Please input your barrier types: (choose from 'up-out', 'up-in', 'down-

out', 'down-in') ")   
57.     k = input("What is your strike price: ")   
58.     b = input("What is your barrier: ")   
59.     r = 0.0138   
60.     T = 1.   
61.     # retrieved from CEV model calibration   
62.     sigma = 0.123509451756   
63.     beta = -0.00270567786139    
64.     for i in range(n):   
65.         stock = Stock(sigma, beta)   
66.         price.append(np.exp(-r*T)*BarrierOption(stock, k, b, Type))   
67.     price = np.array(price)   
68.     # print the price(np.mean(price))   
69.     print "The price of your Barrier Option is: "+ str(np.mean(price))   
70.        
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